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Abstract

We investigated extensively equilibrium, nonequilibrium, and nonlinear aspects of the enthalpy relaxation in a supercooled
liquid [Ca(NO3)2]0.4(KNO3)p6. The equilibrium properties of relaxation, which are described in the framework of linear
response theory, were determined from the frequency-dependent heat capacity measurements. The nonequilibrium and
nonlinear aspects of relaxation were investigated by differential scanning calorimetry and time-domain dynamic calorimetry.
It was found that the nonequilibrium relaxation can be fully accounted for in terms of the equilibrium one if the latter is
properly extended, and that the successful extension of the equilibrium linear relaxation function must include both
nonstationariness and thermorheological complexity. No evidence of genuine nonlinear enthalpy response, aside from the
nonequilibrium effects, was seen in the time-domain dynamic calorimetric data, even when a temperature jump as large as 8 K
was imposed. (© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The glass transition is considered as a dynamic
phenomenon, of which transition temperature is deter-
mined by the experimental time scale, such as a
cooling rate in differential scanning calorimetry
(DSC) experiments. The structural relaxation time t
becomes longer than the experimental time scale
below the glass transition temperature T,, and the
structure of a glassy state relaxes toward a more stable
state, even though it is too slow to observe any
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appreciable change on the normal experimental time
scale. Thus, a glass is thermodynamically unstable and
in nonequilibrium, while a supercooled liquid above
T, can be regarded as a stable state in equilibrium' as
far as there is no route to crystallization [1]. The glass
transition, therefore, describes a process in which a
system falls out of equilibrium and offers an oppor-
tunity to study the relationship between the fluctua-
tions of an observable, enthalpy for instance, in
equilibrium and its relaxation under nonequilibrium
conditions (falling out of or recovering equilibrium).
It is worthwhile to note that the glass transition is a

'In this paper we use the term ‘equilibrium’ to refer to the
supercooled liquid as is usual in the glass literature.
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typical example of ergodicity-breaking phenomena
due to the elongation of the time scale of underlying
dynamics. Since statistical mechanics rests on the
ergodic principle, the glass transition constitutes a
problem of fundamental interest.

Three aspects of the structural recovery, nonlinear-
ity, asymmetry, and memory effects, are usually cited
as characteristic features of the nonequilibrium relaxa-
tion in the glassy state [2—4]. There have been a
number of efforts to adequately describe these fea-
tures. To handle nonlinearity and asymmetry, Tool [2]
proposed that the structural relaxation of a glassy state
should be a function of not only temperature 7', but
also of another variable which can characterize the
internal structure of the glass state. This variable was
then called fictive temperature T¢, and was defined in
such a way that the nonequilibrium value of a certain
quantity at T is equal to the equilibrium value of the
quantity at 7t [S].

Narayanaswamy [3] dealt with the memory effects
by assuming that the structural recovery is governed
by a single nonexponential relaxation function of a
fixed shape and that the shift factor in its time scale is a
function of T;. These assumptions are referred to as
the so-called thermorheological simplicity or time—
temperature superposition. The time scale shift factor
was later refined by Moynihan et al. [6,7] who intro-
duced a nonlinearity parameter x (0 < x < 1) into an
Arrhenius form as

xAR* n (1 —x)An*
RT RT¢

T = Tg exp (1)
where 7o and Ah* (energy barrier per mole) are con-
stants and R is the ideal gas constant. They also took
into account the nonstationary nature of nonequili-
brium relaxation in interpreting their DSC results;
following Narayanaswamy, they wrote the normalized
relaxation function ¢(z,7') as

o(1,¢) = exp [— <£t d%”> ﬁ] . 2)

It is easily seen that Eq. (2) is a modification of the
Kohlrausch—Williams—Watt (KWW) relaxation func-
tion, i.e. ¢(r) = exp[—(¢/7)"], under the assumption
of thermorheological simplicity (i.e. f = constant).
However, it was pointed out that x has no clear
physical interpretation and the Arrhenius temperature

dependence of Eq. (1) in equilibrium (i.e. Tt = T) is
in conflict with the well-known Vogel-Tammann—
Fulcher (VTF) temperature dependence expressed by

D
T = Tpexp (T — To) 3)

where D and T are constants. Scherer [8] adopted the
Adam-Gibbs (AG) theory [9] which explains the
temperature dependence of 7 in terms of the tempera-
ture variation of the size of cooperatively rearranging
regions. Hodge [10,11] also used the AG theory in
writing the temperature dependence of T as

D
T = Tg eXp {T(l — TK/Tf):| “)
where Tk is the Kauzmann temperature at which the
configurational entropy goes to zero [12]. If the system
is in equilibrium, then Eq. (4) recovers the VTF
equation since Ty is often found to be the same as
Tx. From the analysis of the DSC data for various
glass-forming materials using Eqgs. (2) and (4), Hodge
[11] showed a possibility that the glassy state none-
quilibrium relaxation may be accounted for by proper
extension of the equilibrium relaxation in the super-
cooled liquid state above T, (recently Hutchinson
suggested an alternative to the usual extension based
on Eq. (4) [13,14]).

The recent progress of modulation calorimetry
(or frequency-domain dynamic calorimetry) [15,16]
enabled one to measure the equilibrium enthalpy
relaxation associated with the glass transition in the
wide dynamic range. It was shown in our previous
paper [17,18] that the nonequilibrium enthalpy
relaxation (the DSC results) in an ionic glass
former, [Ca(NO3),]04(KNO3)p¢ (CKN), can be well
described if the equilibrium enthalpy relaxation,
directly obtained by frequency-domain dynamic
calorimetry, is properly extended. The successful
extension was accomplished by a model, based on
the modified AG equation of Eq. (4), which takes into
account the nonstationarity and thermorheological
complexity of the relaxation function.

The present paper reports, in detail, on thorough
and comprehensive investigations of nonequilibrium
relaxation and nonlinear relaxation in CKN. Note that
here we are making a distinction between nonequili-
brium relaxation and nonlinear one (for definitions,
see the next section). Nonequilibrium relaxation, of
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course, can show nonlinear effects; however, it should
be understood that the nonlinear effects due to the
nonequilibrium nature of the system is physically
different from genuine nonlinear relaxation as was
already pointed out in [17]. We clearly demonstrate
that there is no nonlinear relaxation in the glass
transition and nonlinear effects in relaxation, if any,
stem from the nonequilibrium nature of a given
experiment. We also rigorously test if it is ever
possible for one to do without thermorheological
complexity in nonequilibrium relaxation, and check
a model for nonequilibrium relaxation proposed by
Ngai et al. [19].

2. Theoretical framework for enthalpy
relaxations

In this section we set up a theoretical framework for
the description of various enthalpy relaxations
reported in this paper. Consider the general equation
for the response ¢(r) of a system to an external
perturbation o (z): [17]

(1) = /_ " Ki()o(l) df

t t
+/ / Ky (t,t, 1) a()o(d")d!' dt” + - - -,
—00J —0O0
)

where ¢ is any strain quantity, ¢ an externally applied
stress quantity, and K; and K, represent the response
functions. K, of course, is the linear response function
obtainable from linear response theory (LRT) [20],
and K, and higher order terms depict nonlinear
responses of the system (For more detailed derivation
with full mathematical complexity, one may refer to
[21].) From the statistical mechanical point of view,
all the equilibrium or near-equilibrium properties of
the system are described as a function of #/kgT,
where #,, kg, and T are the Hamiltonian of the
system, the Boltzmann constant, and the temperature,
respectively. For the temperature variation 07, the
perturbing term in the Hamiltonian can be obtained
from #o/kg(T + 0T) = #o(1 — 6T/T)/kgT. Thus,
the external perturbing field ¢ in our case is repre-
sented by 07 /T which couples to the Hamiltonian of
the system.

Both for modulation calorimetric measurements
where we keep 67 intentionally small and for none-
quilibrium experiments where constant cooling or
heating can be considered as a succession of small
temperature jumps, 67/T appears to be small if we
consider the fact that the glass temperature is on the
order of a few hundred degrees for most materials.
Thus, only the first term in Eq. (5) needs to be
considered for most equilibrium and nonequilibrium
measurements. However, it is conceivable that one
may be able to find nonlinear relaxations due to higher
order terms in situations where 07 is sufficiently large.
In fact, the exploration of this nonlinear relaxation in
the glass transition region of CKN was one of the
purposes of the present investigation. We will come
back to this point later, and now we continue with the
linear response term.

For the isobaric thermal responses ¢ is equal to the
enthalpy deviation from the equilibirum value, §H, per
unit volume and Eq. (5) can be written as

0H (1)
Vv

- / Ku(t,/)oT(() df + Co7(1) ©)

where V denotes the volume. Here we have taken 6T
as the perturbation instead of 0T/T following the
usual definition of the heat capacity. Note that the
contribution from the fast degrees of freedom, such as
phonons is explicitly separated and denoted as C°°,
and Ky is the response function due to the slow
relaxation of the system. One can also represent

Eq. (6) in terms of the relaxation function R(z,7') =
fiooKH(t, ) df”. Tt is quite straightforward to show

that Eq. (6) becomes

OH() _ pc, / 1= g oT () af

%

o0

+ CROT (1) 7

where the relaxation strength and the normalized
relaxation function are given by AC, = R(t,t) and
¢(t,7) = R(t,7')/R(t,t), respectively. The dot, of
course, stands for the derivative.

Although Eq. (7) appears to be linear, it may
become mathematically nonlinear if the function
¢(t,7') itself changes in time. This kind of nonlinear
response occurs as a result of the loss of equilibrium
and therefore loss of stationarity, for example, due to
the slowing down of the system dynamics during
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the course of scanning experiments. The class of
relaxations, which are within the domain of linear
response theroy from the physical point of view but
nevertheless mathematically nonlinear, will be called
nonequilibrium relaxations.

3. Equilibrium relaxation and dynamic
heat capacity

Since the details of modulation calorimetry [16]
and of the equilibrium relaxation measurements
[17,18] were reported earlier, we briefly summarize
the results. For the system in equilibrium, the relaxa-
tion function has the additional property of being
stationary, i.e. ¢(z,1') = ¢ (¢t — ¢'). Then, the dynamic
heat capacity as a function of the angular frequency w
is given by

mm:@+mmJ¢mww, 8)
0

where C[(j = C,° + AC, denotes the static specific heat
capacity. In line with the general susceptibility of
linear response theory, the dynamic heat capacity is
a complex quantity; the physical meaning of the
imaginary part of C,(w) is interpreted as the entropy
increase of the heat reservoir [16].

Fig. 1 shows the real (C,) and imaginary (C,) parts
of the dynamic specific heat capacity versus log f. As

16 T T T T
o
o
—13F
L
% 1.0F
0.7k Jo2

f
log [f (Hz)]

Fig. 1. Real (C}) and imaginary (C;) parts of the dynamic specific
heat capacity of [Ca(NO3)2]o4(KNOs3)s as a function of
frequency. The solid lines are the fitting results with the KWW
function: f = 0.53 (344 K), 0.57 (351 K), and 0.62 (358 K).

is easily seen from the data, the dynamics of the
system slows down with decreasing temperature and
the shape of CI’,’ is asymmetrical. These features are
typical of many glass formers; since it has been found
that the KWW function adequately describes the
dynamics for them, the data at each temperature were
fitted to Eq. (8) with the KWW function. To enhance
the precision, we used the set of real and imaginary
data simultaneously in fitting; it is noted that since C,?
does not vary with temperature, the fitting was done
with three parameters, i.e., AC,, 7, and . The best-fit
curves drawn through the data indicate that the KWW
function is reasonable in describing the equilibrium
enthalpy relaxation of CKN.

In Fig. 2(a), T obtained from the fitting is shown
against 1/7. The data illustrate that t is not behaving
in an Arrhenius fashion, but in a VTF one. The solid
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Fig. 2. (a) The temperature dependence of 7. The solid line denotes
the best-fit result using the Vogel-Fulcher equation. (b) The
temperature dependence of f. A linear function of T is used for
fitting. The uncertainty in the value of f is within £0.02.
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line represents the best fit to the data using the VTF
form. The fitting procedure yielded the values for
parameters: 1o = 10714615 D = 1800 + 320 K,
T, = 288 + 8 K. Fig. 2(b) shows the exponent f§ ver-
sus T. From the figure, it is found that f§ varies linearly
with T, which suggests the thermorheological com-
plexity. The significance of this behavior is that any
analysis based upon the assumption that § = constant
(i.e. thermorheological simplicity) may not be correct,
especially in nonequilibrium situations. It is noted
that the linear variation of f as a function of T,
f =a(T — Ty) with o = 0.0092, can be represented
as = (T —Ty)/(T* — Tp). This defines a hypothe-
tical characteristic temperature 7", whose significance
is discussed in the final section.

4. Nonequilibrium relaxation and differential
scanning calorimetry

In this section, we show that the nonequilibrium
enthalpy relaxation associated with the glass transition
of CKN is quantitatively accountable in terms of the
equilibrium relaxation results presented in the pre-
vious section. While the modulation amplitude 07 is
kept intentionally small in modulation calorimetry to
stay in the equilibrium regime, heat capacity is mea-
sured under nonstationary conditions induced by con-
stant temperature-scanning rates in DSC experiments.
However, the temperature scanning in DSC measure-
ments is completely equivalent to a succession of
small temperature steps, and therefore, if the nonsta-
tionariness is properly taken into account, Eq. (7)
should also be valid in describing the nonequilibrium
situations of DSC experiments.

The definition of 7 for enthalpy can be written by
[6,7]

Ty
H(T) = Hy(Ty) — / Coe(T')dT", ©)
T

where H(T) is the measured enthalpy and H,(T) the
enthalpy of the supercooled liquid in equilibrium.
Since C,, represents the contribution from the fast
degrees of freedom, Eq. (9) states that the enthalpy due
to the relaxing modes is characterized by Tt, while the
temperature of the fast degree of freedom is 7. Thus,
Ty signifies the temperature of the structural config-
uration of the relaxing modes. It can also be shown

easily that d77/dT is equal to the normalized heat
capacity due to the relaxing components, i.e.

a7y _ Cp(T) — Cpe(T)

ot . 10
dT ~ Cp(Tr) — Cpel(Ty) (10

Then we may focus on calculating 7t and its tem-
perature derivatives and compare them with the the
experimental data.

In order to find an equation for 7, one may remove
the contribution due to the fast degrees of freedom
from Eq. (7) and then take the normalization factor
into account:

Ti(t) = T + /l[l — ¢(t,1)]6T(¢) df’ (1)
0

where T(©) is the initial temperature at which the
system is in equilibrium. Note that even if Eq. (11)
is in the form of linear response, the nonstationariness
of ¢(t,7) can cause nonlinear behaviors in the none-
quilibrium relaxation. To evaluate Eq. (11), ¢(7, ') may
be specified as an extension of the equlibrium relaxa-
tion function if f§ is not a function of temperature:

_ NP
o, 1) =p(t—1) =exp [— (t t) ] (12)

T

For a constant cooling or heating rate g, then Eq. (11)
is rewritten by

TH(T) = T

T T N\ B
+/ {1—exp[—(/ dT) ]}dT'7 (13)
To 1 qr

which can be calculated using the following discrete
form which represents the evolution of 7 after the nth
temperature step AT [6,7]

Tf(”) — 70

— — 0]
—1—2 1 —exp <kzjq(">f(k)> ATV, (14)
where %) is determined by the modified AG equation

as

h = To EXP D
TO(1 - To/T{* V)

and the initial condition is 7" = T©).

5)
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However, difficulty arises if f varies as a function
of temperature as in the case of CKN. Since it is
impossible to calculate Eq. (14) numerically, we resort
to a scheme that the KWW function is approximated
by a sum of Debye functions with distribution of
relaxation times (tp;) as [6,22]

_N\F N o
expl—(t -) ] =>wen(-25). ao)
i=1 !

where g; is the normalized weighting factor for
Tpi, Which satisfies vazl g; = 1. The distribution of
the relaxation times can be represented either by the
prefactor distribution with the barrier fixed by the con-
figurational entropy at A/(1 — Ty/T¢) or by the dis-
tribution of the barrier itself around A/(1 — To/T%).
While the physical interpretation of the former repre-
sentation is not easy compared to the latter, it gives the
best results and so we used the former in the present
calculation. In fact, one may raise the question about
the physical basis for using the distribution of Debye
relaxations. However, this would take us to the long-
running debate, and here we are merely content with
taking advantage of mathematical equivalence. Now
that each Debye relaxation time 1p, is time-dependent
via Ty, each exponential relaxation function of
Eq. (16) is replaced by exp[—fft,dt”/rD,-(t”)]. Note that
this is equivalent to assuming the exponential decay at
each instant with tp; of that moment. The time-vary-
ing nature of f is taken into account by making
the distribution function g; time-dependent. We also
assumed that § = (Tt — Tp), because the distribution
of the relaxation times should be determined by the
variable determining the structural configuration,
i.e. Tf.

Then, the distribution after the kth temperature step
is determined by oc(Tﬁkil) —Tp) as the case of 7 in
Eq. (15) since f§ determines the shape of the distribu-
tion. Fig. 3 shows the distributions corresponding
for different values of f5. In the practical calculation,
the temperature step AT was set to 0.05 K. For the
approximation of Eq. (16), we used the algorithm of
singular value decomposition [23] with the Debye
relaxation times which are equally spaced in log-
arithmic scale by

i—1 T
log,ytpi = loggtp1 + <> log,q (DN>, 17
N D1

0.156

0.12

0.09
&

0.06

0.03

Fig. 3. The distribution of the Debye relaxation times for the
KWW functions with different f§ values as designated in the figure.

where 1p; = 107197, 1py =10*, N =71. To
improve the fitting precision, 4N data points of the
KWW function between tp; and tpy were fitted.
The nonequilibrium relaxation in CKN was studied
by measuring heat capacity at various scanning rates
using a Perkin—Elmer DSC 7. Fig. 4 shows the DSC
data measured at the labeled cooing rates and the
heating rate of 10 K/min. The data on cooling show

-1 -
C, (4 k™ g™

" 10 K/min

. .',,,o,y»»”o‘

o8 |
" 1 " A "

300 310 320 330 340 350 360

T (K)

Fig. 4. DSC scanning results (solid lines) at labeled cooling and
10 K/min heating rates. The scale is correct for 20 K/min cooling
data and others are displaced upwards for clarity. The arrows
denote the scanning directions. The closed circles denote C,° from
the dynamic heat capacity data, while the broken line does C,.
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Fig. 5. The open circles represent the normalized heat capacity,
[Cp(T) — Cpe(T)]/[C(T;) — Cpg(Tt)], at labeled cooling and
10 K/min heating rates. The 5 and 10 K/min cooling data are
displaced upwards. The solid lines from the calculation show
excellent coincidence.

a typical transition from the value of the liquid specific
heat capacity (C,) at high temperature to the glass one
(Cpg) at low temperature, while the data on heating are
showing the peaks resulted by the system recovering
equilibrium just above T,.

Fig. 5 displays both the experimental and calculated
data. Since the temperature derivative of T; is equal to
the normalized specific heat capacity as expressed in
Eq. (10), the experimental C, data were also normal-
ized accordingly, that is, [C,(T) — Cpe(T)]/[Cpi(Tr)—
Cpg(Tt)]. One can see that the coincidence between the
experimental and calculated data is striking and the
main features of the temperature-scanning, cooling as
well as heating, data were faithfully reproduced.
Fig. 6(a) shows T, as a function of temperature,
obtained from the calculation for the 10 K/min scan-
ning rate. The hysteric temperature dependence of f3,
obtained from 8 = a(T; — Tp), is shown in Fig. 6(b). It
is stressed that f§ varies as a function of temperature,
and does not remain constant.

The possibility of thermorheological simplicity,
a long standing assumption in the literature, was

355 () :

350
—~ 345
3

= 340

335

330 - .

0.60

0.55

0.50

0.45

0.40

035+

300 310 320 330 340 350 360
T {K)

Fig. 6. Tt and 8 are shown as a function of temperature. These are
the values which yield the best agreement between the experi-
mental and theoretical data. (a) Calculated values of Tt for cooling
and heating rates of 10 K/min. (b) Temperature dependence of f
determined by «(T; — Tp). The arrows represent the scanning
directions.

investigated. If f§ is constant, T; can be easily calcu-
lated without the approximation of Eq. (16). The
results are shown in Fig. 7(a—c) for f = 0.5, 0.45,
and 0.4, respectively. In Fig. 7(a) and (c), it is seen that
the solid lines representing the calculated data deviate
largely from the experimental data. It is even worse
for the values of f§ greater than 0.5. For the calculated
data with § = 0.45, the agreement between the experi-
mental and calculated data seems reasonable as shown
in Fig. 7(b). However, even in this case the statistical
residual analysis indicates that the agreement is not
as good as it is in Fig. 5. Furthermore, the value of
f = 0.45 is completely unrelated to those obtained
from the equilibrium measurements, and is nothing
more than an ad hoc value. Thus, we conclude that the
thermorheological simplicity is not a valid concept at
least for one glass former, CKN.
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Fig. 7. The test of thermorheological simplicity. The solid lines represent the calculated data with temperature independent values of (a)
p = 0.5, (b) 0.45, and (c) 0.4. In (a) and (c), the solid lines deviate largely from the experimental data. For the calculated data with $=0.45, the
agreement between the experimental and calculated data seems reasonable (though not as good as in Fig. 5), but in this case the value of f is
completely unrelated to that obtained from the equilibrium measurements.

Some years ago, a rather different type of the
relaxation function for nonequilibrium situations
was proposed by Ngai et al. [19] from their coupling
theory. From the theory, they derive the following
result for the relaxation function:

-1
dlnqﬁ(t):_ﬁtﬁ ' (18)

dr b
If 7 and f are time-independent as the case of the
equilibrium relaxation, Eq. (18) gives the KWW
function. In nonequilibrium condition, however, both
7 and  may depend on time, so the relaxation func-
tion should be obtained by integrating Eq. (18). The
integration yields

t /-1
(/)(t):exp(—/o ﬂtfﬁ dt’). (19)

However, it was pointed out by Hodge [24] that
Eq. (19) depends on the time interval between the
temperature steps used in calculation, which is
obviously inconsistent with experimental observa-
tions. We tested this model using the previous calcula-
tion procedure. Both the experimental and calculated
data are shown in Fig. 8 for the scanning rate of
10 K/min. It is seen that not only the calculated data

T T T T
i
15.0 + ! .
It
It
125+ : . _
----- At = 0.03 s ¥
~ T
© L At = 0.012 s h N
- 10.0 :':
s — At = 0.006 s :552
2
s 79T T
= ]
i
i
5.0 F A
I
Py
[
25+ o s
o

Fig. 8. The lines denote the calculation results using the model by
Ngai et al. at 10 K/min scanning rate and labeled time steps. The
open circles are the experimental data. Note that the calculation
results vary wildly as different sizes for the time interval between
temperature steps are used.
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deviate largely from the experimental one, but also the
calculation results show sensitive dependence on the
time interval between temperature steps. Thus, it is
concluded that not only the inability of Eq. (19) to
fit the data implies its inadequateness in describing
the nonequilibrium relaxation of CKN, but also the
function itself contains inherent contradiction as the
nonequilibrium relaxation function.

5. Nonlinear relaxation and time-domain
dynamic calorimetry

In time-domain dynamic calorimetry, a certain
amount of heat is applied instantaneously to a sample
and its temperature response is examined in real time.
Initially, applied heat is distributed only among
phonon or fast degrees of freedom causing an ins-
tantaneous temperature jump, and then a portion of
the energy slowly diffuses into the configurational
(relaxing) degrees of freedom resulting in the
decrease of the sample temperature. This tempera-
ture-relaxation experiment is the time-domain coun-
terpart of modulation, or frequency-domain dynamic,
calorimetry in the linear response regime. Time-
domain dynamic calorimetry, however, has an addi-
tional feature which may be taken advantage of in
studying nonlinear relaxation: while it is not easy
to apply a large amount of power to a sample in
modulation calorimetry, there is no difficulty in
varying the temperature-jump size in the time-
domain experiments. This unique feature of time-
domain dynamic calorimetry allows one to study the
nonlinear temperature relaxation induced by a large
temperature-jump [16,25]. Since it is essential to
maintain adiabaticity during the relaxation period
after applying a heat in time-domain dynamic calori-
metry, an adiabatic calorimeter was used for the
investigation of nonlinear relaxation. The details of
the experimental setup and operation of the adiabatic
calorimeter were presented elsewhere [26].

In order to check if the time-domain calorimetric
data can be understood within the same theoretical
framework as the one used for the nonequilibrium
measurements described in the previous section, we
again calculated the temperature evolution according
to Eq. (11) and compared with the experimental data.
Only in this case, the adiabatic constraint was imposed

in the calculation, and Eq. (10) becomes
—Cpe(T) dT = [Cpi(Tt) — Cpe(T)]dTr, (20)

and the instantaneous heat corresponds to Cpe(7;)AT;
where 7; is the initial temperature in equilibrium and
AT; denotes the instantaneous temperature jump. The
evolution of T after the nth time (calculation) step is
given by

T(n) — T(nfl) _ [Cpl(Tf(n))
— G (T = 1", 1)

where Tf<n> can be calculated using the initial condi-
tions of T = T; + AT; and T\ = T;.

In comparing the calculation results with the experi-
mental data, it should be kept in mind that Eq. (21) is
not valid in nonadiabatic situations which always
prevail in the early times after applying heat instanta-
neously. As described in [26], an adiabatic calorimeter
consists of multiple shields and is physically bulky,
and therefore it takes time for the calorimeter to settle
in the adiabatic condition. It turned out that the settling
time for the adiabatic calorimeter used in the present
measurements was about 1 min. It is then obvious that
the relaxation time under investigation must be much
longer than the settling time for time-domain dynamic
calorimetry to yield meaningful results.

We carried out time-domain dynamic calorimetric
measurements of supercooled CKN at 328 K where
the relaxation time of the liquid is as long as several
hundred minutes. Then the effect of the settling time
should be negligible. The data points plotted in Fig. 9
represent the temperature relaxation of the sample
following a temperature rise of AT; =1XK. Also
shown by the solid line in Fig. 9 is the theoretical
results calculated as prescribed above. The nonadia-
batic effect at early times, i.e., the effect of the settling
time, was taken into account in calculation using the
same method as in the temperature-scanning case of
the previous DSC experiment (however, the early time
data are not our concern). The arrow in the figure
indicates the time at which the adiabaticity in the
experiment is established and after which the adiabatic
condition is maintained. It is seen that the coincidence
between the experimental and calculated values is
excellent for the data obtained under adiabaticity. This
nearly perfect agreement vividly manifests the fact
that the time-domain relaxation in supercooled CKN
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Fig. 9. The up-jump experiment in time-domain dynamic calori-
metry. An initial temperature rise of 1 K is imposed on the system
at 7; = 328 K by applying a precalculated amount of power to the
sample, and the ensuing temperature variation is monitored. The
adiabatic condition is achieved (arrow) after a transient period
elapses, and then the temperature relaxes under the adiabatic
condition. The circles represent the experimental data and the line
is drawn from the calculated values, and they show excellent
agreement. Notice the logarithmic scale in the time axis.

following a temperature jump of modest size 1 K is
purely of nonstationary, nonequilibirum nature.

In order to investigate the genuine nonlinear relaxa-
tion in supercooled CKN, we carefully examined the
temperature relaxations caused by temperature jumps
of various magnitudes. That is, an initial temperature
rise of a certain magnitude A7; was imposed on the
system at 7; = 328 K by applying a precalculated
amount of power to the sample, and the ensuing
temperature variation was monitored. These measure-
ments were repeated for AT; = 1,2, 4, and 8 K. Strong
nonlinearity is evident from the temperature relaxation
plot normalized by the initial jump size (AT; = 1,2, 4,
and 8 K) as presented in Fig. 10 . However, this
nonlinearity turns out to be accountable by allowing
Tt and f to vary in the course of relaxation (i.e.
nonstationarity and thermorheological complexity)
as is the case of the previous DSC results. The lines
in Fig. 10 were again calculated from Eq. (21) and the
excellent agreement persists not only for the data from
small temperature jumps but also those from a large
jump of 8 K. These results then suggest that the non-
linear terms in Eq. (5) does not play a role in the
relaxation of supercooled CKN, which is also con-
sistent with the recent investigation on the nonlinear
thermal response at the glass transition of polymers
using temperature modulated DSC [27]. We may add
that we have not carried out down-jump experiments

[1()-T1/a,

Fig. 10. The normalized temperature relaxation in up-jump
experiments. Initially the system is at 7; = 328 K, and sudden
temperature rises of magnitude AT; = 1, 2, 4, and 8 K are induced.
After the transient period elapses, the temperature relaxation occurs
under the adiabatic condition. From the normalized plot the
nonlinear behavior is evident; however, this nonlinearity is fully
accounted for in terms of the extended equilibrium relaxation
function as indicated by solid lines.

(as opposed to the present up-jump experiments) for
technical reasons, but we expect that Eq. (21) would
describe the down-jump experiments equally well.

6. Conclusions

We have extensively investigated equilibrium,
nonequilibrium, and nonlinear aspects of the enthalpy
relaxation in a representative glass former, super-
cooled [Ca(NO3)2]94(KNO3)ps. The equilibrium
properties of relaxation were determined from the
frequency-dependent heat capacity measurements,
while the nonequilibrium aspects of relaxation were
investigated by differential scanning calorimetry and
time-domain dynamic calorimetry. It was found that
the nonequilibrium relaxation can be fully accounted
for in terms of the equilibrium one if the latter is
properly extended, and that the successful extension
of the equilibrium linear relaxation function must
include both nonstationariness and thermorheological
complexity.

Regarding the temperature dependence of f5, i.e.
thermorheological complexity, it was already noted
that # may be expressed in the form of f = (T — Tj)/
(T* — Tp), and this suggests a possible existence of
another characteristic temperature 7* around 397 K.
At T* and above, the relaxation function would
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become the Debye relaxation function with = 1.
This interpretation is in accordance with a recent
molecular dynamics simulation, which predicts the
same kind of nonexponential-exponential crossover
accompanying non-Arrhenius to Arrhenius crossover
in relaxation time at a temperature above T, [28].
Since these crossovers originated from the variation of
potential-energy barrier heights in the energy land-
scape of the system, it is of value to remind that Eq. (4)
can be considered to be in the Arrhenius form with a
temperature-dependent energy barrier height of
D/(1 — Ty/T) in equilibrium. Experimentally a more
convincing evidence for an existence of the character-
istic temperature 7™ in supercooled liquids were found
from the investigation of supercooled polypropylene
glycol [29]. In polypropylene glycol it was seen that
T* (the temperature where f§ becomes 1) is indeed a
temperature where the local Johari-Goldstein mode
[30] merges with the cooperative main relaxation.

Despite its success, there is one caveat to be kept in
mind in extending equilibrium relaxation into the
nonequilibrium regime. Since we do not have a uni-
versally accepted theory for the equilibrium KWW
function (not to mention the nonequilibrium case), we
resorted to the idea of distribution of relaxation times
and seeked to extend it. Our calculation yielded the
best results when the distribution of the Debye relaxa-
tion times was assumed to be caused by the prefactor
(7o) distribution with the energy barrier height fixed at
D/(1 —Ty/T;). These procedures are really ad hoc
without theoretical basis, and need to be justified by a
physical theory.

No evidence of nonlinear enthalpy response, aside
from the nonequilibrium effects, was seen in the time-
domain dynamic calorimetry, even when a tempera-
ture jump as large as 8 K was imposed. This may be
understandable, considering the fact that the tempera-
ture jump of 6T =8 K is equivalent to the perturbation
of only 6T /T =0.025. Since it is technically difficult
to impose a larger temperature jump than 8 K in calori-
metric measurements, it may be worthwhile to attempt
to find nonlinear behaviors in enthalpy relaxation
with low T, materials. Finally, it would be of value
to carry out similar kind of extensive measurements
for different class of materials to establish universality
of the conclusions drawn from the present study.
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